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FREE VIBRATION OF A TIMOSHENKO BEAM
PARTIALLY LOADED WITH DISTRIBUTED MASS
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Exact frequencies and mode shapes have been calculated for a Timoshenko beam, on
different boundary supports and partially loaded with a distributed mass span. They agree
with experimental data. For the higher modes, frequencies obtained through the
Euler–Bernoulli theory are not as accurate as the Timoshenko ones. Results show the effects
of the added mass length, position and density on natural frequencies. The variation is
cyclical with range depending on the added mass inertia. For certain loading, the range
of variation is small, showing frequency to be insensitive to added mass location.
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1. INTRODUCTION

The Euler–Bernoulli equation only applies to slender beams vibrating at long wavelengths.
Rayleigh [1] considered the rotary effect on uniform beam vibration. Timoshenko [2, 3]
considered both the rotary inertia and shear deformation effects. Such a beam was, then
referred to as the Timoshenko beam. The solutions of Timoshenko’s equation for flexural
vibration of a uniform beam have been extensively studied. Traill-Nash and Collar [4]
presented a fairly complete treatment to this problem. In their study, the frequency
equations and mode shape forms of a Timoshenko beam were given for various
combinations of three usual types of boundary conditions, namely, free, simply-supported
and clamped. They showed the appearance of a new spectrum of natural frequencies above
a critical frequency value, and related this to the resonant interaction between the beam
inertia rotation and shearing deflection. It was also shown that for a simply-supported
beam, there existed a pure shear mode at the critical frequency. For various boundary
conditions, Huang [5] obtained two sets of solutions of the Timoshenko equation for
total deflection and bending slope. The constants in these two sets of solutions could
be related to each other. Two distinct natural frequency spectra were also found in the
paper.

In Huang [5], a specific example of a given length of beam showed reduction of modal
frequencies with increasing radius of gyration. Frequency reduction was found to be more
dominant for thicker beams. It was also evident in his results that the higher the mode,
the greater the frequency reduction.

The work mentioned above showed that closed-form solutions existed only for uniform
beams on certain types of boundary conditions but were generally non-existent for
non-uniform beams. Grant [6] studied vibration of a Timoshenko beam carrying a
concentrated mass at an arbitrary position. Using the Dirac d-function to represent the
concentrated mass and Laplace transform, he obtained frequency results that showed
reduction of frequency with increasing Timoshenko effect.
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Solutions have not been obtained so far for vibration of a Timoshenko beam partially
loaded with distributed mass. For a partially loaded Euler–Bernoulli beam, exact solutions
have been obtained by Chan and Zhang [7] and Chan et al. [8]. The present paper will
follow the latter to introduce an exact method to tackle the problem of a Timoshenko beam
partially loaded with distributed mass at an arbitrary position. Since there are no published
results so far for comparison, experimental data have been produced to validate the model.
Computational results will also be given to show some interesting features of frequency
variations.

2. TIMOSHENKO BEAM PARTIALLY LOADED WITH DISTRIBUTED MASS

2.1.     

As a basis for analysis, consider a uniform Timoshenko beam. According to Huang [5],
the equations of motion for free bending vibration of a Timoshenko beam can be written
as,

EI
12f(x, t)

1x2 + kaG01w(x, t)
1x

−f(x, t)1−
mI
a

12f(x, t)
1t2 =0, (1a)

m
12w(x, t)

1t2 − kaG012w(x, t)
1x2 −

1f(x, t)
1x 1=0, (1b)

where w(x, t) is the transverse displacement and f(x, t) the slope due to bending. The
above equations are coupled. E and G are the Young’s and shear moduli, respectively. I
is the second moment of area of the cross-section, a is the cross-sectional area and m is
the mass per unit length of the beam. k is the shear coefficient depending on the shape
of the cross section and the vibration frequency of the beam.

Considerable attention has been paid to the determination of k [9–17]. The results by
Cowper [11] appear to be most comprehensive and based on elementary theory of
elasticity. In fact, the values of k reported in references 9–17 are within a range that should
not affect the calculated frequencies very much, below 2% in the present paper.

The general solutions of equations (1a and 1b) as given by Huang [5] are written as,

w(x, t)=W(x) ejvt =(A sin kax+B cos kax+C sinh kbx+D cosh kbx) ejvt, (2)

f(x, t)=F(x) ejvt =(Aqa cos kax−Bqa sin kax+Cqb cosh kbx+Dqb sinh kbx) ejvt,

(3)

where v is the free vibrating frequency of the beam. In the equations, ka and kb are
expressed as,

ka =(z([a− b]/2)2 + h+(a+ b)/2)1/2, kb =(z([a− b]/2)2 + h−(a+ b)/2)1/2,

(4a, b)

where a=v2m/Ea, b=v2m/kGa and h=v2m/EI. The coefficients A, B, C, and D are
constants and qa = ka − b/ka and qb = kb + b/kb .

It can be seen that ka is always real and positive, while kb may be real, zero, or imaginary,
depending on the value of v2. This leads to the appearance of two spectra in the frequency
domain as mentioned above [4]. Since the aim of this paper is to demonstrate some features
of frequency variations with the distributed mass, the problem of two spectra of
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frequencies will not be discussed in this paper and the concerned frequencies are limited
within the first spectrum of frequencies, that is, kb is real.

2.2.     

Consider the beam partially loaded with distributed mass as shown in Figure 1. To
simplify the mathematical procedure, the origin of the co-ordinates is now located at the
left side of the distributed mass, that is, ld from the left end of the beam. The lengths of
the beam and of the distributed mass are L and la , respectively. The equation of motion
can be expressed as

EI
12f(x, t)

1x2 + kaG 01w(x, t)
1x

−f(x, t)1−
m(x)I

a
12f(x, t)

1t2 =0, (5a)

m(x)
12w(x, t)

1t2 − kaG012w(x, t)
1x2 −

1f(x, t)
1x 1=0, (5b)

where m(x) is defined as,

m(x)=6mm+ma

−ld E xQ 0, la Q xEL−1d ,
0E xE la

(6)

where ma is the added mass per unit length.
Then the general solutions can be written in three parts,

wi (x, t)=Wi (x) ejvt =(Ai sin kaix+Bi cos kaix+Ci sinh kbix+Di cosh kbix) ejvt, (7)

fi (x, t)=Fi (x) ejvt

=(Aiqai cos kaix−Biqai sin kaix+Ciqbi cosh kbix+Diqbi sinh kbix) ejvt, (8)

where i=1 for −ld E xQ 0; i=2 for 0E xE la ; and i=3 for la Q xEL− ld . In these
equations,

kai =(z([ai − bi ]/2)2 + hi +(ai + bi )/2)1/2, (9)

kbi =(z([ai − bi ]/2)2 + hi −(ai + bi )/2)1/2; (10)

ai =v2mi /Ea, bi =v2mi /kGa and hi =v2mi /EI; m1 =m3 =m

and

m2 =m+ma ;

qai = kai − bi /kai and qbi = kbi + bi /kbi .

Figure 1. Schematic diagram of the Timoshenko beam partially loaded with distributed mass.
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When the three sections are split, the continuity and equilibrium conditions at the two ends
of the distributed mass give the following two groups of equations,

w1(0, t)=w2(0, t). f1(0, t)=f2(0, t), EIf'1 (0, t)=EIf'2 (0, t),

kaG(w'1 (0, t)−f1(0, t))= kaG(w'2 (0, t)−f2(0, t)), (11)

and

w2(la , t)=w3(la , t), f2(la , t)=f3(la , t), EIf'2 (la , t)=EIf'3 (la , t),

kaG(w'2 (la , t)−f2(la , t))= kaG(w'3 (la , t)−f3(la , t)), (12)

where the prime refers to the derivative of the function to x.
Substituting equations (7) and (8) into equations (11) and (12), the following matrix

equations are obtained,

A1 A2 A2 A3

B1 B2 B2 B3G
G

G

K

k

G
G

G

L

l

G
G

G

K

k

G
G

G

L

l

G
G

G

K

k

G
G

G

L

l

G
G

G

K

k

G
G

G

L

l

[T1] C1
=[T2L ]

C2
and [T2R] C2

=[T3] C3
, (13, 14)

D1 D2 D2 D3

where

0 1 0 1

qa1 0 qb1 0
G
G

G

K

k

G
G

G

L

l

[T1]= 0 −qa1ka1 0 qb1kb1
, (15)

ka1 − qa1 0 kb1 − qb1 0

0 1 0 1

qa2 0 qb2 0
G
G

G

K

k

G
G

G

L

l

[T2L ]=
0 −qa2ka2 0 qb2kb2

, (16)

ka2 − qa2 0 kb2 − qb2 0

sin ka2la cos ka2la sinh ka2la cosh ka2la

qa2 cos ka2la −qa2 sin ka2la qb2 cosh kb2la qb2 sinh kb2laG
G

G

K

k

G
G

G

L

l

[T2R ]= −qa2ka2 sin ka2la −qa2ka2 cos ka2la qb2kb2 sinh kb2la qb2kb2 cosh kb2la
(17)

(ka2 − qa2) cos ka2la −(ka2 − qa2) sin ka2la (kb2 − qb2) cosh kb2la (kb2 − qb2) sinh kb2la

and

sin ka3la cos ka3la sinh ka3la cosh ka3la

qa3 cos ka3la −qa3 sin ka3la qb3 cosh kb3la qb3 sinh kb3laG
G

G

K

k

G
G

G

L

l

[T3]= −qa3ka3 sin ka3la −qa3ka3 cos ka3la qb3kb3 sinh kb3la qb3kb3 cosh kb3la
(18)

(ka3 − qa3) cos ka3la −(ka3 − qa3) sin ka3la (kb3 − qb3) cosh kb3la (kb3 − qb3) sinh kb3la
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Figure 2. The experimental setup of a cantilever tube partially filled with mercury.

The boundary conditions yield,

A1 A3

B1 B3G
G

G

F

f

G
G

G

J

j

G
G

G

F

f

G
G

G

J

j

[K1] C1
+ [K3] C3

=0 (19)

D1 D3

where [K1] and [K3] are dependent on boundary conditions and their matrix forms can be
found in the Appendix. As an example that is convenient for experimental data to be
obtained, a cantilever Timoshenko beam is considered, as shown in Figure 2. Then,

−sin ka1ld cos ka1ld −sinh kb1ld cosh kb1ld
qa1 cos ka1ld qa1 sin ka1ld qb1 cosh kb1ld −qb1 sinh kb1ldG

G

G

K

k

G
G

G

L

l

[K1]= 0 0 0 0
(20)

0 0 0 0

[K3]=

0 0 0 0

0 0 0 0

−qa3ka3 sin ka3(L− ld ) −qa3ka3 cos ka3(L− ld ) qb3kb3 sinh kb3(L− ld ) qb3kb3 cosh kb3(L− ld )

(ka3 − qa3) cos ka3(L− ld ) −(ka3 − qa3) sin ka3(L− ld ) (kb3 − qb3) cosh kb3(L− ld ) (kb3 − qb3) sinh kb3(L− ld )

(21)

By using equations (13) and (14), the coefficient vectors, (A1 B1 C1 D1)T and
(A2 B2 C2 D2)T can be eliminated to give,

A3

B3G
G

G

K

k

G
G

G

L

l

{[K1][T1]−1[T2L ][T2R ]−1[T3]+ [K3]} C3
=0 (22)

D3

K
G
G
G
G
k

L
G
G
G
G
l
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The roots of the determinant equation,

=[K1][T1]−1[T2L ][T2R ]−1[T3]+ [K3]==0 (23)

give the exact natural frequencies. The corresponding eigenvectors of equation (22)
together with equations (13) and (14) determine the eigenfunctions in the form of equations
(7) and (8). The eigenfunctions give the mode shapes of the loaded cantilever.

3. EXPERIMENT

3.1.  -  

Built-in and free-end supports are easier to set up experimentally. A cantilever tube was
then built for the experiments. In Figure 2 is shown the aluminium cantilever tube which
is 200 mm long, 2 mm thick and 12 mm in external diameter. Its density was measured to
be 2892 kg/m3. The Young’s and the shear moduli of the tube material were measured by
a frequency method. A slender rod of the same material was made. It was suspended
horizontally by two flexible strings to form a free–free beam. The ‘‘pendulum’’ modes of
the setup are so low that they do not affect the flexural modes. The first ten natural
frequencies of the free–free beam were then measured by using a hammering method to
be introduced later. The Young’s modulus was determined as 6·1802×1010 N/m2 from the
fundamental frequency using the formula presented by Tefft [18]. (Because of the
slenderness of the rod, the fundamental mode is assumed to be less influenced by the
Timoshenko effect.) The shear modulus was determined to be 2·5412×1010 N/m2 from all
the ten natural frequencies by using the Timoshenko model. The least squares method was
employed to obtain the best estimation of the constant.

A thin disc was made available to block a column of mercury within the tube to form
a partial span of mass. Using the notations shown in the figure, ld =60 mm, and the
mercury length la can be varied and measured by using a floating ruler. Careful check has
been carried out, showing that the effect of the thin disc on natural frequencies and mode
shapes of the tube is negligible. The damping ratio of the tube for the first mode was
measured as 4·08×10−4 (empty) and 9·87×10−4 (with mercury, 0·7L), showing an
increasing trend. However, the values do not appear to have appreciable effect on the
measured free vibration frequency.

Natural frequencies and mode shapes of the partially filled tube were measured by the
modal testing system shown in figure 2. The random series of impacts method introduced
by Wong and Chan [19] was used in the measurement. The tube was excited by an
instrumented hammer (B&K 8202), and a light-weight accelerometer (B&K 4374) was used
to measure the response. The mass of the accelerometer was 0·65 g. Compared with the
mass of the empty tube, 36·34 g, this would cause less than 1% frequency reduction when
the accelerometer is placed at an anti-nodal position. Both excitation and response signals
were amplified and transferred to a signal analyser (B&K 2032 with 801 lines) to calculate
the frequency response function (FRF). The analyser was set to 50 samples on averaged
mode, with Hanning smoothing and 75% overlapping. Using a modal analysis software
(PC MODEL, VEC Inc.), natural frequencies and mode shapes of the first three modes
were measured. Frequency were determined from the FRFs by the curve-fitting method,
and mode shape data were calculated from a set of modal constants, which were also
extracted from the FRFs. The method of ‘‘roving exciter’’ was employed in the experiment,
where the output acceleration of the tube was recorded at a single stationary reference
point (free end), and the tube was excited at a number of locations along the tube. For
each value of mercury length, a set of FRFs were obtained for modal analysis.
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3.2.    

Figures 3 and 4 show experimental results of natural frequency and mode shape of the
cantilever tube, respectively, for different lengths of mercury. The corresponding
computational results are also given in the figures for comparison. They are calculated
based on the Euler–Bernoulli beam theory (Chan and Zhang, [7]) and the Timoshenko
beam theory (present formulation), as differentiated by the solid and dotted lines
respectively. It is seen from Figure 3 that the computational results based on Timoshenko
theory agree quite well with experimental data. The results also show that the
Euler–Bernoulli theory has over-estimated the natural frequencies of the cantilever tube.
In other words, Timoshenko theory is a more accurate model, particularly evident for the
third mode. It is noticeable that there is a disparity between the theoretical and measured
natural frequencies of the beam without mercury. This can be attributed to the fact that
it is difficult to make a perfect built-in support. For the mode shape measurements, Figure
4 shows that the third mode shapes for three different mercury lengths (length ratio equals
0·0, 0·2 and 0·7) agree well with the computed results by both theories. It can be seen that
Euler–Bernoulli and Timoshenko beam theories predict almost similar mode shapes
irrespective of the difference in the predicted natural frequencies.

A comparison between the present method and the finite element method (FEM) for
calculating natural frequencies of the partially filled tube, as studied in the experiment, has
also been made (results not presented here). The results by FEM are found to be consistent
with those by the present method. The difference between them is reduced with increasing
number of elements. Such difference is also found to increase with the mode number, but
the maximum is within 1%, for the first three modes. It is found that FEM predicts higher
values of natural frequencies. This is consistent with the fact that the present method
predicts the exact (stationary) eigenvalues of the system.

Figure 3. The frequency shift of the cantilever tube partially filled with mercury at ld /L=0·3. WWW, mode
1; EEE, mode 2; QQQ, mode 3. Key: solid curves are for Euler–Bernoulli theory; dashed curves for
Timoshenko theory; symbols are experimental data.
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Figure 4. The third cantilever tube mode shapes with mercury at ld/L=0·3. la /L values: , , ,, 0·0; E E E,
0.2; Q Q Q, 0·7. Key as for Figure 3.

4. COMPUTATIONAL RESULTS AND DISCUSSION

Since there are available data in the literature for a simply supported beam with
concentrated mass for comparison, such a beam structure is used as an example here. As
shown in Figure 1, the mass is assumed to be added symmetrically about the beam axis.
When la becomes very small compared with L, the distributed mass can be considered as
a concentrated one.

4.1.   

When la /L=0·001, the natural frequency as function of ld calculated by equation (23)
has been found to be almost similar to that when la /L=0·01. For comparison with Grant
[6], when the load is at the mid point of the beam, the natural frequencies as a function
of radius of gyration rg , where rg =zI/a, is given in Figure 5. The parameters used in
the computation are the same as those in Grant [6]. The present results agree very well
with the data extracted from Grant [6], indicating that the present general model predicts
results of Grant’s particular case.

4.2.   

In Figure 6 is shown the frequency curves as the functions of position of the mass centre.
Frequency values are scaled by the corresponding modal values of the unloaded
Timoshenko beam. Let D be the diameter of the circular beam used in this example and
L its length. Assume that D/L=0·1, and Poisson’s ratio, g=0·345. According to Cowper
[11], the shear coefficient for a circular section, k=6(1+ g)/(7+6g)=0·89. Initially, let
the length be fixed at la /L=0·1, and ma /m=10. Figure 6 gives the modal frequency curves
for mode numbers 1, 2, 3 and 6, showing peak and trough features.
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Figure 5. The frequency shift of the beam in Figure 1 with simply-supported ends. la /L=0·001 and
ld /L=0·4995. mr is the ratio of added mass to beam mass. Symbols are data reproduced from Grant [6] with
courtesy.

In the figure is shown three points on the curve of the third mode. They are marked
as A, B and C, respectively representing the peak, minimum and median frequency values
for some specific positions of the mass. At these positions, the third normal mode shapes
and bending slope curves are shown in Figures 7a and 7b, respectively.† One observes that
the bending slope varies slightly compared with significant variation of the mode shape.
From Figure 7a, it can be seen that the nodal points shift with mass position, in a
‘‘swinging’’ manner. As the mass centre is located at positions B or C, it coincides with
a position other than the node of the affected mode. The amplitude of the mode shape
is locally reduced, but its maximum increased, compared with that when the mass centre
is at position A. When the mass centre is situated at a node, the normalized mode shape
is more regular.

4.3.       

Three possible cases are studied;
Case 1: la /L varies while ma /m remains constant;
Case 2: la /L varies while the distributed mass, mala , remains constant;
Case 3: ma /m varies while la /L remains constant.
For these three cases, the frequency shift curves for the third vibrating mode as function

of the position of mass centre are shown in Figure 8 (la /L=0·05, 0·10, 0·16 and 0·20 while
ma /m=10), Figure 9 (la /L=0·05, 0·10, 0·15 and 0·40 while mala /mL=2), and Figure 10

†The normal vibrating modes are obtained by the following normalization process, i.e. let

g
L−1d

− ld
6EIdFi (x)

dx
dFi (x)

dx
+ kaG 0dWi (x)

dx
−Fi (x)1 0dWj (x)

dx
−Fj (x)17 dx= di j,

i, j=1, 2, 3, . . .
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Figure 6. The frequency shift of the beam in Figure 1 with simply-supported ends. la /L=0·1, ma /m=10 and
D/L=0·1. ——, mode 1; – · – · –, mode 2; – – – – – –. mode 3; --------, mode 6.

(ma /m=10, 20, 33 and 50 while la /L=0·1) respectively. In Figure 8 are show two groups
of points, marked as solid and hollow circles for later use.

A common and noticeable feature is that there exist certain values of la /L (Cases 1 and
2) or ma /m (Case 3), where the frequency is not sensitive to the mass centre position. From
the figure, it can be seen that at those values of la /L or ma /m, the frequency shift curves
change in shape, appearing as ‘‘transitions’’ from one shape to other. The frequency curves
appear to be mirror images about the ‘‘plateau’’ line. This feature can be interpreted in
terms of energy distributions.

Figure 7. The third normal mode shapes of the beam in Figure 1 with simply-supported ends. ma /m=10,
D/L=0·1 and la /L=0·1. ——, at position A; – – – – – –, B; --------, C as indicated in Figure 6. (a) for transverse,
W; (b) for bending slope, F.
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Figure 8. The frequency shift of the beam in Figure 1 with simply-supported ends. ma /m=10 and D/L=0·1
for different values of mass length, la /L. Solid circles are Group A data and hollow circles Group B.

Using Case 1 (Figure 8) as an example, consider the energy distributions between beam
strain, beam kinetic and mass kinetic energies. All mode shapes are normalized to make
maximum potential energy unity. Thus, the square of the circular natural frequency will
be inversely proportional to the maximum reference kinetic energy, written as

T*=T*beam +T*mass =g
L− ld

−ld
6mW2(x)+

mI
a

F2(x)7 dx+g
la

0 6maW2(x)+
maI
a

F2(x)7 dx

(23)

where T*beam and T*mass are the parts of the beam and the mass, respectively.
In Figure 11 is shown the distributions of T*beam and T*mass as function of mass centre

position, for la /L=0·05, 0·1, 0·16 and 0·2. Two groups of curves appear, top ones for T*beam

and bottom ones for T*mass , as indicated in the figure.
For various values of la /L, T*beam curves show little change compared with T*mass ones. For

la /L=0·1, T*beam is minimum when the mass centre is located at a node, and maximum at
an anti-node. The former effect is expected to be less effective in reducing frequency and
the latter more effective. It can be seen in Figures 7a and 7b that the change of the beam
kinetic energy is due to the change of mode shapes rather than their slopes.

T*mass curves shown in Figure 11 appear to be more sensitive to change in mass length
ratio. Computational results show translate inertia is more dominant than the rotary
inertia in affecting T*mass .

In Figure 12 is shown the normal mode shapes for la /L=0·05, 0·1, 0·16 and 0·2 for mass
positions A and B (refer to figure 8). When la /L is equal to 0·05, T*mass is maximum at
position B and minimum at position A. The T*mass curve appears to be of the same ‘‘phase’’
as that of the T*beam curve. When the ratio is increased to 0·1, at position B, the added mass
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laps the nodes at two sides of the mode and the vibration amplitude is reduced locally.
At position A, the distributed mass of 0.1 covers the antinodes at two sides. At these two
positions T*mass is almost equal. It can be seen in Figure 11 that the T*mass curve is like a
plateau. Increasing la /L further, T*mass curves shift up with a larger range of fluctuations.
The curve shape appears to be out of ‘‘phase’’ with that of the T*beam curve.

Therefore, it is not difficult to explain the plateau curve of Figure 8. When la /L equals
0·16, the T*mass curve is out of phase with that of T*beam . The sum of them is T* curve in
a shape of an inverted plateau, resulting in the frequency plateau curve of Figure 8. Thus,
before the transition, the frequency curve shape is governed by the beam inertia. After that,
it is dominated by the added mass inertia.

For Cases 2 and 3, the above argument is also valid. Thus for a beam–mass system,
it is possible to obtain an arrangement that is not sensitive to a change in mass position.
This can be of value in solving practical engineering problems, perhaps particularly useful
for analyzing vibration of beams with a traversing mass.

4.4.    –    - 

It may also be useful to give some indication of the validity of Euler–Bernoulli theory
for the mass-loaded beam. Some computational work has been conducted on the error of
the Euler–Bernoulli theory for the mass-loaded simply-supported beam, compared with
Timoshenko theory. It is shown that besides the effect of the mode number and the radius
of gyration–length ratio of the beam (rg /L), the error also depends on the parameters of
the added mass, such as the mass (mr =ma /m), the mass length (la /L) and the mass position
(ld /L). From our results (not presented here), for the fundamental mode, the effect of such
parameters is relatively slight (the error is below 2%). For the higher modes, the error
appears to be higher (up to 7% for the second mode and 18% for the third). Thus, there
is no general rule with regard to when Euler–Bernoulli theory could be used instead of

Figure 9. The frequency shift of the beam in Figure 1 with simply-supported ends. ma la /mL=2 and D/L=0·1
for different values of mass length, la /L.



1.0

0.90

0.2
Relative position of mass center

F
re

qu
en

cy
 r

at
io

0.70

0.6

ma/m = 10

0.80

20

33

50

    365

Figure 10. The frequency shift of the beam in Figure 1 with simply-supported ends. D/L=0·1 and la /L=0·1
for different values of density ratio, ma /m.

Timoshenko theory for the studied beam. Compared with Timoshenko theory, the error
of Euler–Bernoulli theory is actually due to disregarding the effect of rotary inertia and
shear deformation. For uniform beams, the effect of shear deformation is the major factor
for the reduction in natural frequency, as pointed out by Timoshenko himself [3]. However,
for the mass-loaded beam, the effect of rotary inertia and shear deformation is found to
vary with the aforementioned mass parameters, and when the added mass is located at
some position or its length is of a certain value, the effect of rotary inertia becomes more
predominant than that of shear deformation.

5. CONCLUSIONS

An exact solution to a free vibration problem of a Timoshenko beam partially loaded
with a distributed mass over an intermediate span has been obtained for different boundary
conditions. The natural frequencies and normal mode shapes were calculated. An
experiment has also been carried out to verify the data. It was found that the present
Timoshenko beam model yields more accurate natural frequencies than the
Euler–Bernoulli theory, especially for higher modes. The model could also be used for a
beam with a concentrated load, with the results calculated appearing to be consistent with
those of another investigator.

Some interesting computational results were obtained. It was found that there was no
frequency change for certain values of added mass position, length and/or density. For
other values, however, the change appeared to be cyclical with amplitude depending on
the inertia of the added mass. Through the analysis of energy distributions, such feature
was found to be mainly due to translatory motion of the mode but not to the rotary one.
This can be of value in solving practical engineering problems, perhaps particularly useful
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Figure 11. Curves of reference kinetic energy of the beam in Figure 1 with simply-supported ends. ma /m=10
and D/L=0·1. la /L values: ——, 0·05; – – – –. 0·1; – · – · –, 0·16; --------, 0·2.

Figure 12. The third mode shapes of the beam in Figure 1 with simply-supported ends at groups A B positions
as shown in Figure 8. ma /m=10, D/L=0·1. la /L values: ——, 0·05; – – – –, 0·1; – · – · –, 0·16; --------, 0·2.
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for analyzing the vibration of beams with traversing mass. For the mass-loaded beam, the
effect of rotary inertia and shear deformation was found to vary with the mass parameters,
and sometimes the effect of rotary inertia became predominant.
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APPENDIX: MATRIX EXPRESSION FOR SEVERAL COMMON CLASSICAL
BOUNDARY CONDITIONS

A.1. –

EI dF1(−ld )/dx=0, kaG[dW1(−ld )/dx−F1(−ld )]=0,

EI dF3(L− ld )/dx=0, kaG[dW3(L− ld )/dx−F3(L− ld )]=0,

qa1ka1 sinh ka1(ld ) −qa1ka1 cos ka1(ld ) −qb1kb1 sinh kb1(ld ) qb1kb1 cosh kb1(ld )

(ka1 − qa1) cos ka1(kld ) (ka1 − qa1) sin ka1(ld ) (kb1 − qb1) cosh kb1(ld ) −(kb1 − qb1) sinh kb1(ld ) ,[Kl ]= 0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0
[K3]= −qa3ka3 sin ka3(L− ld ) −qa3ka3 cos ka3(L− ld ) qb3kb3 sinh kb3(L− ld ) qb3kb3 cosh kb3(L− ld )

.

(ka3−qa3) cos ka3(L−ld ) −(ka3−qa3) sin ka3(L−ld ) (kb3−qb3) cosh kb3(L−ld ) (kb3−qb3) sinh kb3(L−ld )

A.2. – ()

W1(−ld )=0, F1(−ld )=0, EI dF3(L− ld )/dx=0,

kaG[dW3(L− ld )/dx−F3(L− ld )]=0,

−sin ka1ld cos ka1ld −sinh kb1ld cosh kb1ld
qa1 cos ka1ld qa1 sin ka1ld qb1 cosh kb1ld −qb1 sinh kb1ld

[K1]= 0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0
[K3]= −qa3ka3 sin ka3(L− ld ) −qa3ka3 cos ka3(L− ld ) qb3kb3 sinh kb3(L− ld ) qb3kb3 cosh kb3(L− ld )

.

(ka3−qa3) cos ka3(L−ld ) −(ka3−qa3) sin ka3(L−ld ) (kb3−qb3) cosh kb3(L−ld ) (kb3−qb3) sinh kb3(L−ld )

A.3. – (-)

W1(−ld )=0, EI dF1(−ld )/dx=0, W3(L− ld )=0, EI dF3(L− ld )/dx=0,

−sin ka1ld cos ka1ld −sinh kb1ld cosh kb1ld
qa1ka1 sin ka1ld −qa1ka1 cos ka1ld −qb1kb1 sinh kb1ld qb1kb1 cosh kb1ld

[K1]= 0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0
[K3]= sin ka3(L− ld ) cos ka3(L− ld ) sinh kb3(L− ld ) cosh kb3(L− ld )

.

−qa3ka3 sin ka3(L−ld ) −qa3ka3 cos ka3(L−ld ) qb3kb3 sinh kb3(L−ld ) qb3kb3 cosh kb3(L−ld )
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A.4. –

W1(−ld )=0, F1(−ld )=0, W3(L− ld )=0, EI dF3(L− ld )/dx=0,

−sin ka1ld cos ka1ld −sinh kb1ld cosh kb1ld
qa1 cos ka1ld qa1 sin ka1ld qb1 cosh kb1ld −qb1 sinh kb1ldG

G

G

K

k

G
G

G

L

l

[K1]= 0 0 0 0
,

0 0 0 0

0 0 0 0

0 0 0 0
G
G

G

K

k

G
G

G

L

l

[K3]= sin ka3(L− ld ) cos ka3(L− ld ) sinh kb3(L− ld ) cosh kb3(L− ld )
.

−qa3ka3 sin ka3(L−ld ) −qa3ka3 cos ka3(L−ld ) qb3kb3 sinh kb3(L−ld ) qb3kb3 cosh kb3(L−ld )

A.5. –

W1(−ld )=0, F1(−ld )=0, W3(L− ld )=0, F3(L− ld )=0,

−sin ka1ld cos ka1ld −sinh kb1ld cosh kb1ld
qa1 cos ka1ld qa1 sin ka1ld qb1 cosh kb1ld −qb1 sinh kb1ldG

G

G

K

k

G
G

G

L

l
[K1]= 0 0 0 0 ,

0 0 0 0

sin ka3(L− ld ) cos ka3(L− ld ) sinh kb3(L− ld ) cosh kb3(L− ld )

qa3 cos ka3(L− ld ) −qa3 sin ka3(L− ld ) qb3 cosh kb3(L− ld ) qb3 sinh kb3(L− ld )G
G

G

K

k

G
G

G

L

l
[K3]= 0 0 0 0 .

0 0 0 0


